Factory farms
One of the more extreme solutions is to grow crops indoors or inside a greenhouse. This type of artificial environment allows the inputs to be controlled precisely and limits the damage, or “externalities”, to the environment. These systems can greatly reduce the volume of water, pesticides, and fertilizers used, help ensure optimal growing conditions and extended growing seasons, and even enable crops to be grown vertically on shelves.
Farminova claims that their factory farm system reduces water consumption by 85-95%, cuts fertilizer use by 60%, and entirely eliminates the need for pesticides. Furthermore, in a world where fertile farm land is increasingly scarce, as more land is assigned to residential and industrial operations, this type of factory farm can produce more than 10x the volume of crops for the same land area.11
Another example is the UK-based company HydroCotton, which uses hydropnonics to grow cotton indoors with 80% less water and no pesticides. When we imagine agriculture, most people think of food, but a large part of agriculture produces natural fibres for clothing as well as wood for construction and crops for feeding livestock.9
Well-established automation systems receive next-gen upgrades
Urbanisation has greatly depleted the size of rural communities and therefore the pool of skilled labor available for occasional and seasonal farm work. The evolution of the workforce continues today. In 1900, the rural population was 6.7x times larger than the urban population. Today this ratio has reversed, and now more of the world’s population live in urban settlements than in the countryside.12
As we see in other industries facing a growing shortage of skilled labor, robotics and automation solutions are filling the labor shortage gap in agriculture. Automated milking systems (AMS) on dairy farms have seen rapid adoption since their first commercial installation on a farm in the Netherlands in 1992, with 20-30% of dairy farms in the Netherlands and Nordics using some form of AMS today.13 Basic AMS systems require a certain amount of human involvement (directing the cows into the stalls and attaching the suction cups to the udders, etc). However, recent innovations from companies such as GEA and DeLaval allow for fully automated systems that guide the cattle into the stalls, simultaneously feed and milk the cows, with portions of feed individualized depending on the milk yield and biometric data of each cow; the systems also automatically clean the udders and gently attach the suction cups. GEA’s DairyMilk M6850 also has integrated somatic cell count into the system, which uses EPT (Electrical Permittivity Threshold) technology to ensure the health of the herd.
Beyond dairy farms, when we look at large scale “row crop” farms, innovations such as “precision agriculture” have already achieved significant penetration. Precision agriculture uses satellite-based positioning systems (GNSS, or the more familiar term GPS), sometimes supported by laser-based equipment on the ground, to show the precise position of a tractor or other piece of farm machinery in the field in order to guide such machinery accurately around the field. In combination with a variety of topological and geomorphic data, the system can determine the optimal level of inputs (seed, fertilizer, water, pesticide, etc.) for each area of the field and adjust the system’s sprayers accordingly.
Here too, however, recent innovations are enabling some important upgrades to the solutions. The use of drones now makes precision agriculture far more affordable by eliminating the need for data from satellites or light aircraft. Also, a number of companies are developing systems to enable precision agriculture without a human driver behind the wheel.
Autonomous tractors have been slow to come to market for the simple reason that a commercial tractor can weigh well over 10,000 kg,14 and therefore any failure in the software could result in catastrophic physical damage. However, recent developments from a number of companies (John Deere, CNH Industrial, Pattison Liquid Systems, Raven Autonomy, Iseki & Co. and others) suggest that fully autonomous tractors and perhaps other large farm equipment, such as combine harvesters, will be commercially available soon.